Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38189805

RESUMO

The laboratory practice "Primary culture and directional differentiation of rat bone marrow mesenchymal stem cells (BMSCs)" is part of a required course for sophomore medical students at Tongji university, which has been conducted since 2012. Blended learning has been widely applied in medical courses. Based on a student-centered teaching philosophy, we reconstructed a comprehensive stem cell laboratory module with blended learning in 2021, aiming to facilitate students in enhancing their understanding of the multi-lineage differentiation potential of stem cells and improve their experimental skills, self-directed learning ability, and innovative thinking. First, we constructed in-depth online study resources, including videos demonstrating laboratory procedures, a PowerPoint slide deck, and published literature on student self-learning before class. In class, students performed a primary culture of BMSCs, freely chose among adipogenic, osteogenic, or chondrogenic differentiation, and used cytochemical or immunofluorescence staining for identification. After class, the extracurricular part involved performing quantitative polymerase chain reaction to examine the expression of multi-lineage differentiation marker genes, which was designed as an elective. After 2 years of practice, positive feedback was obtained from both students and faculty members who achieved, the learning goal as expected. The reconstructed stem cell laboratory module provides comprehensive practice opportunities for students. Students have a better understanding of BMSC at the molecular, cellular, and functional levels and have improved their experimental skills, which forms a basis for scientific research for medical students. Introducing blended learning into other medical laboratory practices thus seems valuable.

2.
Cell Prolif ; 50(6)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28924976

RESUMO

OBJECTIVES: Primary retinal pigment epithelium (RPE) cells have a limited capacity to re-establish epithelial morphology and to maintain native RPE function in vitro, and all commercially available RPE cell lines have drawbacks of morphology or function; therefore, the establishment of new RPE cell lines with typical characteristics of RPE would be helpful in further understanding of their physiological and pathological mechanisms. Here, we firstly report a new spontaneously generated RPE line, fhRPE-13A, from a 13-week aborted foetus. We aimed to investigate its availability as a RPE model. MATERIALS AND METHODS: RNA-seq data were mapped to the human genome assembly hg19. Global transcriptional data were analysed by Weighted Gene Co-expression Network Analysis (WGCNA) and differentially expressed genes (DEGs). The morphology and molecular characteristics were examined by immunofluorescence, transmission electron micrographs, PCR and western blot. Photoreceptor outer segments (POS) phagocytosis assay and transepithelial resistance measurement (TER) were performed to assess phagocytic activity and barrier function, respectively. RESULTS: The fhRPE-13A cells showed typical polygonal morphology and normal biological processes of RPE. Meanwhile they were capable of POS phagocytosis in vitro, and the expression level of TYR and TYRP1 were significantly higher than that in ARPE-19 cells. CONCLUSIONS: The foetal human RPE line fhRPE-13A is a valuable system for researching phagocytosis and morphogenesis of RPE in vitro.


Assuntos
Fagocitose/fisiologia , Epitélio Pigmentado da Retina/citologia , Linhagem Celular , Células Cultivadas , Imunofluorescência/métodos , Humanos , Cultura Primária de Células/métodos , Epitélio Pigmentado da Retina/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...